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ABSTRACT 

The moment magnifier method for analysing beam-columns has been extensively 
applied to steel and reinforced concrete structures. This study concerns the 
application of the method to eccentrically loaded plain and reinforced masonry 
walls. 

In this study the strength of a cross-section is based on a linear stress diagram 
which takes into account the tensile strength of the masonry. The critical buckling 
load is based on the properties of the wall accounting for the extent of crack 
penetration and the portion of wall height subjected to cracking. 

For a give� eccentricity condition, the ultimate load capacity of a wall is 
determined by an iterative procedure. The first step is the calculation of the 
capacity assuming a short wall. The critical buckling load is then calculated and a 
new value of the ultimate load is determined by applying the moment magnifier 
equation. The procedure is repeated until the load converges. 

INTRODUCTION 

Masonry walls are frequently loaded eccentrically and must be analysed for the 
effects of combined bending and axial load. The behavior of such walls is 
affected by material properties, the presence of reinforcement, flexural stiffness 
and column slenderness. An evaluation of the ultimate capacity must recognize 
the increase in applied moments due to the so-called P-D effect. The moment 
magnifier method provides a means of accounting for this effect. 

The relationship between axial load and moment may be conveniently described 
by interaction diagrams. Such diagrams may be constructed for different cases of 
end eccentricities and for walls of different slenderness values. 
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This present study describes an analysis of masonry walls based on the moment 
magnifier method of assessing the effects of combined bending and axial load. The 
analysis accounts for the effects of material properties, wall slenderness, the 
presence of cracks and the presence of reinforcement. A method of developing 
interaction diagrams for various conditions of end eccentricity is presented. 

Analysis for Combined Bending And Axial Load 

Consider a structural member subjected to eccentric loading as shown in Fig. 1(a). 
Under the action of the equal end moments, the member will deform as shown in 
Figure 1(b). On the basis of elastic behavior the basic differential equation is 

EI 
d1t v 

p 
d

2
v

0 --+ 
dz lt dz2 

(1)

Letting k =

V = 

{ P/EI , the lateral displacement

e {(l- 
7sin 

os 
kh 

kh) sin kz + cos kz - 1} (2) 

The maximum value of v occurs at mid-height as shown in Figure 1(c) and may be 
expressed to a satisfactory degree of accuracy as 

V =max 
V 

(3) 

wh ere v is the lateral deflection at mid-height due to the moment Pe only and  Pcr is
the critical buckling load.

The same increase from v to vmax would result if the applied moment Pe was
increased to 

V 

M Pe max
(4) 

V 

or 

M Pe 
(1 - P/P er

(5) 

The term 1/(1-P/P er ) is defined as the magnification factor and M is the magnified
moment. Conditions at mid-height may therefore be analysed for the axial load P 
and the magnified moment M. 



Other end moment conditions result in different magnification factors; however 
all conditions may be referenced to the case of equal end moments. For any 
end condition 

M = Pe 

C m
(1 - P/P )er 

3. 

where C m is a factor which converts the given moment condition to an equivalent

equal end moment condition. 

Evaluation of Pcr for Masonry Walls

The value of P cr is required for the evaluation of the magnification factor. Its 
value is affected by cracks which develop in the wall due to the lateral deflection 
produced by end moments. The cracks produce a reduction in flexural stiffness EI 
which is proportional to the eccentricity of the applied load. 

Yokel (1) developed the differential equations for the buckling of plain masonry 
walls in which the masonry has no tensile strength, i.e. cracks penetrate on the 
tension side to the point where the stress is equal to zero. The solution of these 
equations for a solid wall gives 

where 

p = 
er 

e = 
t = 

Ebt 9 

0.641 rr2 
(0.5 - e/t) 3 �

eccentricity of vertical load 

b 
thickness 
width 

h = height 
E = modulus of elasticity 

(6) 

bt3 

Letting Io = 
12 = moment of inertia of the full cross-section

EI 
P = 7.69 rr 2 

(0.5 - e/t) 3 

h2
° er (7) 

In this form the equation may be applied to solid or hollow sections. The 
equation may be approximated as 

EI 
P = 8rr 2 (O.S - e/t) 3 0 

er h2 (8) 

This equation compares favorably with the solutions presented by Chapman and 
Slatford (2). 

= 



Letting 

where 

= 8(0.5 - e/t) 3 I 
0 

(9) 

= the moment of inertia of the uncracked portion of the
cross-section. 

the critical buckling load can then be expressed as 

p er
= (10) 

If we consider that the masonry possesses some tensile strength f� the 
conditions on the cross-section will correspond to Figure 2. Cracks 
penetrate to the point where the tension stress equals f� and 

= 8(0.5 - e/t + L1 3 I 2t o (11) 

where� is the distance from the point of zero stress to the end of the crack. 
This distance is obtained from the following relations 

f 
4 

max 3 A(l - 2e)
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(12) 

2tP 
Af (13) 
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�f't
(14) 

-max

4. 

If the wall is subjected to unequal end eccentricities, e1 and e2, producing single 
curvature bending, the value of e in the above equations may be taken as equal to the 
average of e

1 and e
2
. Although this is an approximation, it gives satisfactory results.

A method for determining the buckling load for the case of double curvature bending 
has been developed by the writers (3). Even though walls bent in double curvature 
may be expected to crack as shown in Figure 3a, in fact buckling will tend to occur in 
the primary single loop configuration shown in Figure 3b. This behavior is 
substantiated in tests as indicated by typical results shown in Figure 4. The properties 
of the wall therefore may be approximated as a "stepped" column as shown 



in Figure 5. The critical buckling load may be expressed as 

p er
= A 

EI 
0 

h2 (15) 

where;\ is a buckling coefficient for the "stepped" column which depends on I1/I
0 

and e1/{e1+e2). A complete table of;\ values is presented in Reference (3).

The buckling load for a reinforced masonry wall in single curvature can be evaluated 
by Equation (10) for eccentricities smaller than t/3. For larger eccentricities the 
reinforcement will be in tension and the behavior will be related to the moment of 
inertia of the transformed section. A lower limit may be placed on the flexural 
stiffness as proposed by MacGregor et al. (4) for reinforced concrete, namely 

EI [0.5 - e/t] > 0.10 EI 
0 0 

(16) 

The analysis of reinforced walls in double curvature may be carried out similarly to 
the analysis of plain masonry walls described above.

Interaction Diagrams 

An interaction diagram for a masonry wall is dependent on the wall thickness, the 
height of wall, the end eccentricities and the material properties. In the 
experimental phase of this study wall test specimens were 40 inches wide and 
composed of nominal 8-inch hollow concrete blocks (t = 7-5/8"). Reinforced walls 
contained either three #3 bars or three #9 bars. The interaction diagrams 
presented in this paper conform to these properties. The following material 
properties were used, based on the results of tests: 

f' m

f' t

E 

= 2500 psi 

= 200 psi 

= 1.125 X 106 psi 

A computer program was developed to construct the interaction diagrams. The 
following assumptions were made in the analysis: 

5. 

1. sections plane before loading remain plane during loading.

2. The stress strain relationship for masonry is parabolic.

3. No tensile capacity for masonry is included in the calculation for moment
resistance.

4. The strain in the reinforcement is the same as in the surrounding
grout.



5. The stress-strain relationship for the reinforcement is linear up to the
yield stress at which point the behavior becomes perfectly plastic.

a) Plain Masonry Walls

(i) Single Curvature with Equal End Eccentricities

Case I - h/t = o

There are no slenderness effects for this case. Points on the interaction
diagram may then be directly calculated for various values of e/t. The resulting 
interaction diagram is shown in Figure 6. 

Case II - h/t > 0

Slenderness effects must be taken into account for this case and 
therefore an iterative procedure must be employed. The interaction diagram for 
h/t = 0 is an upper bound solution and can be used to establish a starting point 
for the iterative procedure. The procedure is as follows: 

1. For a particular e/t ratio obtain values for P and M from the interaction
diagram based on h/t = 0. These values are the first approximations
for the values for the particular h/t value being considered.

2. Using the value of P obtained in Step 1, calculate f max , ·t; and� by
means of Equations (12), (13) and (14). Determine I1 from Equation
(11) and then calculate P cr by means of Equation ( 10).

3. By substituting the value of M from Step 1 and the value of
P cr from Step 2 into Equation (5), solve for a new value of the load P.

4. Obtain the corresponding value for M from the interaction diagram for
h/t = 0. This value together with the value of P obtained in Step 3
constitute the new values to be used in the second cycle of iteration.

Steps 2, 3 and 4 are repeated until convergence in the value of P occurs. 
Convergence will be rapid and only two or three cycles will be necessary to 
complete the solution. 

The following numerical example illustrates the calculations for a wall with h/t = 6.5. 
The wall is 40 inches wide  and composed of 8-inch hollow concrete blocks (t = 
7-5/8"). It is desired to obtain the point on the interaction diagram for e/t = 1/3. The
calculations are carried out as follows:
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1. 

2. 

3. 

From the interaction diagram for h/t = 0 (Figure 6) p = 135 kips. The 
corresponding moment M = Pe  = Pt/3 = 343 kip-in.

From 
From 
From 
From 

From 

M = 

Equation (12) , 
Equation (13) , 
Equation (14) , 
Equation (10) , 

Equation (5) 

Pe 
(1 - P/P er )

343 = P X  2.54 
(1 - P/396) 

p = 100 kips 

f = 1. 77 ksi 
max 

E; = 3.8 in. 
z:; = 0.43 in. 
p = 396 kips. er

4. From the interaction diagram for h/t = 0, M = Pe =  320 kips.

The second cycle of iteration therefore begins with P = 100 kips, M = 320 kip-in. 
Repeating Steps 2 and 3 results in a revised value of P = 99 kips which indicates 
satisfactory convergence. The corresponding value of M = Pe is 252 kip-in. 
Therefore the point on the interaction diagram for e/t = 1/3 is P = 99 kips and M = 
252 kip-in. 

Other points on the interaction diagram are obtained by considering other values of 
e/t. Figure 6 shows the completed diagram. 

Interaction diagrams for other eccentricity conditions in plain walls and for 
reinforced walls are constructed by means of similar procedures to those described 
above. Figures 7, 8, 9, 10 and 11 present interaction diagrams for these various 
conditions. 

Experimental values are plotted for comparison with the theoretical interaction 
diagrams. As expected, there are significant differences in some cases. However, 
the experimental results are in fairly good agreement with the analytical values. 
Also plotted on the Figures are interaction curves derived from CSA Standard S304 
"Masonry Design and Construction for Buildings" (5), These curves are based on 
the CSA provisions for reduction in capacity due to slenderness and eccentricity and 
a factor of safety of 1.0 to account for failure conditions. 

Complete data for all wall tests is presented in two reports (6) and (7) prepared by 
the authors. 

7.



Conclusion 

The moment magnifier method is an effective method of analysing ultimate failure 
conditions in eccentrically loaded masonry walls. The effects of cracking, 
reinforcement and various eccentricity conditions can be satisfactorily taken into account in 
the method. The results of the moment magnifier analysis compare favorably with 
experimental results.
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