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Abstract

In the design of load bearing masonry structures,
subjected to the combined action of wvertical and lateral
loads, it is necessary to account for the effect of lateral
deflections, or the so-called P-A effect. In North America
the moment magnifier method has been extensively applied
in the evaluation of the P-A effect in steel and reinforced
concrete beam columns. ~This method can also be satis-
factorily applied in the case of masonry structures.

This paper presents the application of the moment
magnifier method to the analysis of load bearing brick
walls. The analytical results are compared with results

of tests of large brick wall panels.
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Introduction

The complete, accurate analysis of a structural
member subiected to axial compression and bending must
include the effect of lateral deflections on moments
throughout the length of the member. This effect is
commonly referred to as the P-A effect. Various methods
for such analysis ha§e been summarized by MacGregor (1).

The P-A effect magnifies the primary moments; thus the
reason for describing one method of analysis as the moment
magnifier method.

Canadian design standards for structural steel and
reinforced concrete (2), (3) employ the concept of moment
magnification in the design procedures for members subjected
to axial load and bending. The moment magnifier method has
been shown by the authors (4) to satisfactorily predict
the behavior of concrete masonry walls. 1In the present study
the moment magnifier method is applied to brick walls and
the analytical results are compared with the results of

an experimental investigation.

Analzsis

To account for the effect oi lateral deflections in
a vertical structural member subjected to eccentric
compression forces applied with equal eccentricities at the

member ends, the moment magnifier analysis gives the value



of the resulting maximum moment as

Pe
(1 - P/Pc

M ) (1)

r

where P applied vertical load

e = gccentricity of wvertical load

P

. critical buckling load

If the end eccentricities are not equal, the resulting

maximum moment may be expressed as

6
m :
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where Ch = & factor which converts the given end moment

condition to an equivalent equal end moment

condition.
For end eccentricities ey and e2 where el < e,
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An acceptable value for the critical buckling load is

EI
Py, = BUA(0.5 ~ e/E)’ Tﬁi (4)
wheore t = wall thickness
I, = moment of inertia of gross cross section or
%%; where b = wall width
h = wall height

E = modulus of elasticity



Letting I, = 8:(0.5 = aft)* .

EIl
= B e (5)
Pcr ¥ h?

If we consider that masonry possesses some tensile
strength f!, the conditions on the cross section will
correspond to Figure 1. Cracks penetrate to the point where

the tension stress equals fé and

x " ‘ Ly :
Il = 8(0.5 e/t + 2t) Io (6)

where ¢ is the distance from the point of zero stress to the
end of the crack. This distance is obtained from the fol-

lowing egquations.
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If the wall is subjected to unequal end eccentricities,

e, and e, producing single curvature bending, the value of

1
e in Equation (7) may be taken as equal to the average of
e and e,. Although this is an approximation, it gives

satisfactory results.

A method for determining the buckling load for a

wall in double curvature bending is presented in Refarence (5) .



Although walls bent in double curvature may be expected to
crack as shown in Figure 2, the buckling configuration tends
to be the primary single loop configuration shown in

Figure 3. This behaviour is verified by typical test

results shown in Figure 9. As a result, it is possible to
represent the wall as an equivalent "stepped" wall shown

in Figure 4. The critical buckling load for such a structure

may be expressed as

(10)

where A is a buckling coefficient for the "stepped" wall
which depends on a = el/(el + ez) and B = Il/IO. Values
of A are tabulated in Table 1 and a more extensive tabula-
tion is included in Reference (5).

The mode of failure of masonry walls is affected
by the magnitude of the end eccentricities. It has been
shown by the authors (6) that for initial end eccentricities
greater than t/20, concrete block masonry fails when the
compressive strength of the units is reached. For
eccentricities smaller than t/20, failure occurs by vertical
splitting of the units.

An interaction diagram provides an effective means
of describing the behavior of an eccentrically loaded
masonry wall. Such a diagram is a graph of vertical load
vs maximum moment, and is dependent on height and thickness

of the wall, end eccentricities and material properties.




A primary interaction diagram may be constructed on
the basis of strength, i.e. considering h/t = 0, for which
case there are no slenderness effects. Based on wall
dimensions, eccentricity and material properties it can be
shown (7) that the interaction diagram is defined by the

following two eguations:

= (B - t B 11
M = (Po P) 3 for 5 > 0.5 (11)
o)
and wow (1 =22y BB gor Zie s (12)
3P 2 P -
o (6}

where M = resisting moment

P = vertical load

Po = compressive strength, fé, times net mortar

bedded area, Am

Figureé 11 and 12 show interaction diagrams based
on these equations for the case of fé = 18.6N/mm?,

Am = 69930 mm? and t = 190 mm, values which correspond to

the properties of specimens tested in the experimental portion

of the present study.

To establish an interaction diagram for % >0,

slenderness effects must be taken into account. With
increased slenderness, lateral deflection increases in
eccentrically loaded walls. This fact is reflected in the
value of the critical buckling load PCr which is a factor in

the equation for magnified moment. An iterative procedure



must be employed in order to establish points on the inter-
action diagram. The procedure for determining the point
on the diagram for a particular e/t value consists of

the following steps:

l. For the particular e/t ratio, obtain values of P and
M from the interaction diagram based on h/t = 0.
2. Calculate P
cr
3. Calculate a revised value for P.

4. Repeat steps 1 to 3 until convergence occurs.

Convergence is rapid and only two or three cycles are
normally necessary to obtain the correct values of P and M
for the interaction diagram.
The following example illustrates typical calculations

in the iterative procedure.

Given: b = 1000 mm
t = 190 mm
h = 3900 mm
By = By S t/3 (single curvature bending)
£ = 1.38 N/mm?
E = 13.44 x 10° N/mm*
1, = %%; = 5.72 x 108 ram"

0,

From Figure 11, for %

Pensmi325. kN



Then M = Pe = 20.5 kNm

From Equation (7) fmax = 3.31 N/mm?
From Equation (8) E = 190 mm
From Equation (9) r = 80 mm
From Equation (6) Il = 0.432 I,
From Equation (5) Pcr = 2020 kN

Substituting in Equation (1)

P x 63.3 x 107°%

P
1 - 3520

20.5 =

]

from which P 280 kN

This is the end of the first cycle of iteration. The second
cycle begins with P = 280 kN and M = Pe = 17.7 kNm. After
the second cycle P converges to a value of 260 kN.

The complete interaction diagram for h/t = 20.5

is shown in Figure 11.

Experimental Program

Materials

Two core 190 x 90 x 390 mm pressed clay units, as
shown in Figure 5, were used in the test specimens. Based
on tests on six 33 x 58 x 92 mm solid specimens cut from
the units, the average compressive strength of the material
was 21.2 N/mm?. The h/t ratio of these specimens was 2.79.

The average compressive strength of six whole units was

18.6 N/mm*.



Mortar used in building the test specimens was
factory produced (ready mixed) mortar delivered to the
laboratory by the supplier. The composition of the mortar
conformed to the requirements of type N mortar as defined
by CSA sStandard Al179-1975 (8). The average compressive
strength at 28 days was 7.4 N/mm?2.

The compressive strength of the masonry assembly
was determined from tests on 5 short specimens shown in
Figure 6. The slenderness ratio of these specimens was 3.14.
The average compressive strength based on gross cross-
sectional area was 5.3 N/mm?, and the compressive

strength based on net mortar bedded area was 14.5 N/mm?.

Wall Specimens

Ten plain wall specimens were tested. All specimens
were 190 x 1000 x 3600 mm. They were cbnstructed by an
experiehced mason and allowed to cure in laboratory environ-
ment for a minimum of 28 days. No horizontal or vertical
reinforcement was used. To avoid local failures during
testing, the top and bottom courses in all walls were fully

grouted with fine grout.

Test Procedure

The wall specimens were tested to failure in a
6225 kN capacity hydraulic testing machine. End eccentri-
cities were varied to include conditions of axial load,

single curvature bending and double curvature bending as
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indicated in Table 2. Figure 7 shows a typical specimen in
the testing machine. Lateral deflections at five equally
spaced elevations were measured by means of LVDT units at

various loads prior to failure.

Test Results

The results of the tests of the 10 wall specimens
are summarized.in Table 2. Typical deflected shapes are
presented in Figures 8 and 9. Test results are plotted
in Figures 11 and 12 for comparison with theoretical inter-
action diagrams.

All walls tested in double curvature bending
deflected in a single loop configuration as shown in Figure 9.
As shown in Table 2, walls tested in single curvature bending
deflected appreciably more than walls tested in double
curvature bending. In general there was good agreement

between analytical and test values of failure loads.

Conclusion

Results of this study indicate that the moment
magnifier method satisfactorily accounts for slenderness
effects, i.e. the P-A effect, in eccentrically loaded
brick masoniyy walls. This is confirmed from results of
ten tests covering a range of end eccentricities, including

single curvature bending and double curvature bending.
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TABLE 1 Buckling Coefficients for Stepped Walls and Columns
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TABLE 2 Summary of Test Results
Eccentricity| Vertical Maximum Maximum
Wall e e Load Deflection| Moment |Type of Failure
1 2
kN mm kNm
1 0 0 850 10 8.5 splitting,
crushing
2 0 0 775 3 2.0 splitting
31 £/12] t/12 791 1l 212
4 /12 e/l 645 14 19.2 crushing
5 t/12] /12 649 17 21.8
6 t/6 t/6 602 21 31.5 crushing
7 t/3 /3 203 10 14.9 crushing
8 | t/12]|-t/12 725 3 11.4 crushing
9 t/6 |-t/6 638 2 20.2 crushing
10 t/3 |-t/3 | 429 3 27,1 crushing

14.
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Figure 3 Buckling Mode for Wall in
Double Curvature
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Figure 7 Wall Specimen Ready for Testing
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Figure 8 Deflected Shape of Wall in Single Curvature
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Figure 9 Deflected Shape of Wall in Double Curvature



Figure 10 Explosive Failure of Wall Tested in
Double Curvature Bending
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Interaction Diagram for Walls in
Single Curvature Bending
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