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BUCKLING OF PLAIN MASONRY WALLS WITH INITIAL DOUBLE CURVATURE

By Hatzinikolas, M., Longworth, J., and Warwaruk, J.

ABSTRACT: Masonry walls loaded in double curvature tend to fail in the
first buckling mode. The buckling loads for masonry walls with initial
double curvature imperfections or moments are evaluated using the
energy approach and fifth order polynomials for interpolating functions.
Results for a number of full scale walls tested under double curvature
moments are compared with the analytical results.
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INTRODUCTION

Recently a number of researchers have studied the application
of the moment magnifier method to the design of load bearing masonry
walls. The method has been shown to give satisfactory results for walls
bent in single curvature and for eccentricities within the kern. Most
significant is the work of Dikkers, R.D. and Yokel, F.Y.(1) and that of
Faltal, S.G. and Cattaneo, L.E.(2), For walls subjected to double
curvature bending it is assumed that the moment magnifier method will
give satisfactory results because of the increased buckling load. In
this paper a method of evaluating the critical load for masonry walls
with initial double curvature bending is presented and test results for
a number of full scale specimens are reported.

BUCKLING OF MASONRY WALLS

Solutions to the buckling problem of walls or columns without
tensile strength were proposed by Chapman, J.C. and Slafford, J.(3) and
by Yokel, F.Y.(4). The solution of the differential equations presented
in Reference (4) for walls in single curvature bending gives the follow-
ing expression for the critical load:

g , (0.5t - e)? EI_
Pcr = 0.285 5T 12 [1]

where = the modulus of elasticity of the masonry
thickness of the wall

eccentricity of the applied load

the length of the wall.

Ly uncracked moment of inertia.
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This solution can be approximated with an accuracy of 3.87 by

e EIO
PCr = 8m% (0.5 - Eﬁa iz [2]
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The first buckling mode is a lower energy configuration than the second
mode, and as a result of this, regardless of the loading condition and
initial imperfection, the member tends to assume this configuration.
When this happens, the cracks created by the end moments on one side of
the wall will close and, in effect, this side will be uncracked. The
member may then be analyzed as a "stepped-column" as shown in Figure 1.

Initially the location of the point of inflection is given by

o = 1
el + e2
where ep = the smaller of the two end eccentricities
eg = the larger of the two end eccentricities

The moment of inertia of the cracked section may be approximated on the
basis of Equation 2 as:
e

k iTides
I1 = (0.5 s ) Io

and the section can be now analyzed as the column shown in Figure 2.

EVALUATION OF BUCKLING LOAD OF EQUIVALENT SECTION BY THE ENERGY METHOD

The total potential energy at buckling for any member sub-
jected to combined bending and axial load is given by

L L
I, = 1/2 fo A (y'")? dx - 1/2 B f (y')? dx [3]
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where y = the buckled shape.

For an elastic structure the total potential HB is composed of the
strain energy and the potential of the applied load. The equilibrium
condition is expressed mathematically as:

anB=o [4]

To solve the buckling load for the stepped column an appropriate
buckled shape is selected and the condition of Equation 4 is imposed on
the total potential relation.

To obtain the best possible shape for the buckling configur-

ation, a finite element approach is used with a fifth order inter-
polating function.

Equation 3 is rewritten to account for the different section
properties in the two segments as follows:
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Letting y = <¢> {9}

Then y' = <¢'> {0}
y'' = <¢'"> {8}
(y1)% = <¢"> {6 <¢'> {6} = {0} [o'] {6}
(yvi)Z = <p''> {e} <p''> {e} L {e} [@!l] {e}

where y = deflection
y' = slope

y'' = curvature
e =

¢> <¢l ¢2 ¢3 ¢4 ¢5 ¢6>, the interpolating functions,
and - -
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Since end deflections ¥1 and yp are zero, the interpolating
functions ¢1 and ¢, must be zero.

Changing the limits of integration and substituting for y''
and y' in Equation 5, the following relation is obtained for the total
potential

EI0 a
M, = 1/2 =2 /; {8} [@''] {6} dn

EIl 1 1
+1/2 o f {6} [¢''] {0} dn - 1/2 Pcr L f {6} [®'] {B} dn
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Applying Equation 4 to the above, the equilibrium condition may be

expressed as
a
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where B = El
o

The above relation can be reduced to
[K] {8} = A [Kg] {6} [6]

where [K]
[Kg]

bending stiffness matrix
geometric stiffness matrix

This equation is solved as an Eigen value problem to find A.

For L2/EIo = 1 the above relation can be solved to obtain the
coefficients which will give the buckling load P mA EIOIL2 for
values of o and B. Table 1 is a tabulation of A values as found using
this method. The interpolating functions and the boundary conditions
used are given in the Appendix. Table 1 can be used to evaluate P..
for any stepped column of constant modulus of elasticity by entering
with o and B finding A and multiplying A by EIo/Lz.

The advantages of using this method are:

(a) High order polynomials will approximate very closely a sine
curve and other shapes that a stepped column can assume as a
result of initial bending and variations in the geometric
properties. It is found that a fifth order polynomial is
quite adequate in this case.

(b) Using a determinant search method and approaching the solution
from the left will assure the selection of the best shape to
minimize the energy stored in the system.

EXPERIMENTAL PROGRAM AND RESULTS

Ten plain walls were built using 8x8x16 two core C-90 blocks
and type S mortar. The end eccentricities and the slenderness ratios
of the walls tested are listed in Table 2.

The walls were tested in a 1.6 million pound capacity testing
machine at ages varying from 28 to 65 days. Deflections were monitored
throughout each test and the deflected shapes at selected loads were
plotted. The tendency of the walls to fail in their first buckling
modes is shown in Figure 4 and 5. Figure 6 shows the calculated and
experimental buckling loads. The theoretical analysis was based on

I, = 1200 in.% and E = 1.35 x 108 psi. Table 2 gives a summary of test
results. As expected, the experimental results were lower than the

theoretical buckling loads because material failures occurred before the
buckling loads were reached. This type of failure is more probable than
buckling failure for small eccentricities and slenderness ratios less
than 30. However the mode of failure was in close agreement with the




assumed first mode. Movement of the point of inflection with
increasing load was observed, which further strengthens the assumption
that the first buckling mode is the more critical, regardless of the
end conditions. Figure 5 shows a comparison of test results with
theoretical values.

CONCLUSIONS

Masonry walls subjected to double curvature bending tend to
buckle in their first buckling mode. The critical loads for such walls
can be obtained using energy methods and fifth order polynomials for
interpolation functions. The results, using one element and fifth
order interpolating functions, are good estimates of the buckling loads.
For a wall with a constant moment of inertia, the error is 0.048%. The
coefficients for evaluating the critical loads for walls subjected to
double curvature bending can be used in the moment magnifier method in
designing such walls.
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APPENDIX

EVALUATION OF INTERPOLATING FUNCTION

All mathematical operations involving interpolating functions
and the solution of the buckling problem were carried out using a
computer.

Since deflections are zero at both ends ¢ and ¢, are zero.
The remaining four functions are shown schematically in Figure 3. The
boundary conditions to be satisfied by these functions (¢, 93, ¢5, Pg)
are as follows:

n y y' y functions
0 0 1 0 v,

1 0 0 0

0 0 0 1 ¢

1 0 0 0 3

0 0 0 0 o

1 0 1 0 3

0 0 0 0 ®

i 0 0 il 6

The functions which satisfy these conditions are:

¢2 = -3n® + 8n* - 6n® + n

o3 = -1/2 (n® - 3n* + 3n® - n?)
¢5 = -3n° + 7n* - 4n°

¢ = 1/2 (n® - 2n* + n?)

Differentiating these functions once yields

by 05 05 0L 05 61 ¢ 0

[e'] = 9y 03 03 61 0% ¢
symmetric ¢§ ¢g ¢§ ¢é
b6 %6

Substitution of the functions and integration of the above matrix from
0 to 1 results in



0.22857 0.016666 -0.014285 0.004762

1

d/P ['] dn = 0.0015873 -0.004762 0.000793 = [Kg]
: symmetric 0.228571 -0.016667
0.001587

where [Kg] is the geometric stiffness matrix.

The interpolating functions are then differentiated twice and the
matrix [¢''] is obtained as:

0T8T e ey e

[¢''] = ¢é' 28 29 ¢ ¢3" 0!
symmetric ¢§' ¢§' ¢§' ¢é'
o' 03

After substitution of the corresponding functions, integrating this
matrix and evaluating [@"]g + C[@"]&, the bending stiffness matrix,
[K], is obtained.

For the case of a column with constant EIl (0. = 0) this
matrix is

5.4857 0.3143 +3.0857 -0.11428

[K] = 0.0857 0.1143 0.01428
symmetric 5.4857 -0.31428
0.00857

Solving the relation
1,2

[K] {8} = B EE—-[Kg] {6}
L2 2
for EL =1
(o]

and the geometric and bending stiffness matrices, [K,] and [K] as
evaluated above, using the power sweep method, P., = 9.8734354 which
compares very closely with the exact value of m?. Table 1 is obtained
by evaluating [K] and solving relations for various values of o and B
from 0.0 to 1.
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Table 2 - Loading Conditions and Test Results

Wall

h/t

e

e

Load at failure

e (inc;es) (incies) (kips)
El 17.97 +3.54 -3.54 85.0
E2 15.87 +3.54 -3.54 115.0
E3 13277 +3.54 =~3.54 135.2
E4 13277 +2.54 -2.54 156.6
E5 13.77 +1.27 =1..27 220.4
G5 17.97 +2.54 -3.00 150.6
G6 17.97 +2.54 -3.54 144.4
G7 17.97 +1.27 =127 196.6
G8 17297 +3.00 —=3:54 117.0
G9 17.97 +3.00 -3.00 148.2
M1 24.20 0.00 0.00 139.2
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FIGURE 1: CRACKED SECTION AT BUCKLING
UNDER THE ACTION OF AXIAL LOAD
AND DOUBLE CURVATURE BENDING
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FIGURE 2: EQUIVALENT SECTION

-7

Y2

L gx
q7=—{%— d17=-tr-dn

FIGURE 3: INTERPOLATING FUNCTIONS
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RELATION BETWEEN CALCULATED
AND EXPERIMENTAL RESULTS





